人物在选择永磁电机时需谨慎考虑磁材了解其作用以便明智地区分有刷与无刷电机的差异
导语:永磁电机依赖于永磁体产生其磁场,不需要励磁线圈或励磁电流,效率高、结构简单。近年来,随着高性能永磁材料的进步,永磁电机的应用范围不断扩大。
在工业中,电机是最广泛使用的设备之一,其性能受到各种材料影响,其中包括了广泛应用于各类工业设备中的永久 magnets(PMs)。PMs对电机性能至关重要,它们能够提供稳定的、高效率的动力输出。
选择合适的PM对于提高整体系统效率至关重要。这些材料可以根据它们在外部场中表现出的特性进行分类,如顺序、抗性的反铁质、铁质以及亚铁质。在考虑永磁电机时,我们主要关注的是铁质和亚铁质,因为它们具有强烈地反应外部场,这使得它们成为强大的材料。
这种强大材料,在Curies温度以下都能自发产生共振,并且包含了用于制造各种物品如软壳和记录媒介等永久 magnetics 的工艺。然而,对于我们来说,最相关的是用于制造可持续能源解决方案所需的人造 permanent magnet materials 和 soft magnetic materials。
permanent magnets 是 永 磁 电 机 的 核 心 材料,它们的一次激发后很难放弃。这意味着一旦这些 Permanent Magnet 在烧结过程完成后,就能够保持其具有保存 Permanent Magnetic Field 的能力,然后通过充分激发操作来维持恒定的 Permanent Magnetic Field 力量,从参数指标上看Permanent Magnet 具有宽阔回路内感应曲线、高矫顽力和高剩余 Field 力三项特点。矫顽力越高,材料就越不容易放弃它保持起来的状态,这就是为什么Permanent Magnets 作为转换子源,可以为一个系统提供稳定的Field 势一样好比是一个电路中的Electric Potential Difference。
soft magnetic materials 也容易被激活,但是一旦激活就会迅速失去效果。这意味着从参数指标上看,它们具有低矫顽力和高通导率,因此通常被用作导向Field Line 的传输器。而这两种类型之间存在显著差异:Permanent Magnets 还是追求更高级别的矫顽力的目标,即尽可能增强不放弃状态能力,而Soft Magnetic Materials 则专注于更高通导率,以便让Field 更顺畅地传递过去而不会阻碍这个过程。
permanent magnet material selection and high-performance motors
The choice of permanent magnet material is closely related to the performance of the motor. Now that rare earth permanent motors have become widely used, it's no secret. The extremely high magnetic energy product and coercive force of rare earth materials make rare earth permanent motors not only smaller in volume and weight but also consume less energy, operate more efficiently, and are more reliable.
Rare-earth PMs have undergone many generations of development, with the main current material being sintered neodymium iron boron (NdFeB). NdFeB is currently the most commonly used rare-earth PM for electric vehicles and industrial applications.
Sintered NdFeB has a relatively low residual induction compared to other PMs but outperforms them in terms of coercivity level and magnetic energy product. Its dominance in this field means that electric machines can be miniaturized while maintaining their efficiency due to its exceptionally high levels of flux density per unit mass.
While using rare-earth PMs may increase costs due to limited availability, they provide optimal performance for high-efficiency applications like electric vehicle drives or wind turbines where size-to-weight ratio matters most. However, there might come a time when alternative technologies emerge offering comparable performance at lower cost points or better environmental sustainability profiles.
Conclusion:
The choice of PM material plays a decisive role in determining both the overall performance and cost-effectiveness of an electric motor system. It requires careful consideration based on specific application requirements to select appropriate materials for constructing efficient systems that meet operational demands without compromising durability or safety standards.